Imagem não uniforme #

Isso ilustra a classe NonUniformImage. Ele não está disponível por meio de um método Axes, mas é facilmente adicionado a uma instância de Axes, conforme mostrado aqui.

Classe NonUniformImage, mais próximo, mais próximo, bilinear, bilinear
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.image import NonUniformImage
from matplotlib import cm

interp = 'nearest'

# Linear x array for cell centers:
x = np.linspace(-4, 4, 9)

# Highly nonlinear x array:
x2 = x**3

y = np.linspace(-4, 4, 9)

z = np.sqrt(x[np.newaxis, :]**2 + y[:, np.newaxis]**2)

fig, axs = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
fig.suptitle('NonUniformImage class', fontsize='large')
ax = axs[0, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
                     cmap=cm.Purples)
im.set_data(x, y, z)
ax.add_image(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)

ax = axs[0, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
                     cmap=cm.Purples)
im.set_data(x2, y, z)
ax.add_image(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)

interp = 'bilinear'

ax = axs[1, 0]
im = NonUniformImage(ax, interpolation=interp, extent=(-4, 4, -4, 4),
                     cmap=cm.Purples)
im.set_data(x, y, z)
ax.add_image(im)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
ax.set_title(interp)

ax = axs[1, 1]
im = NonUniformImage(ax, interpolation=interp, extent=(-64, 64, -4, 4),
                     cmap=cm.Purples)
im.set_data(x2, y, z)
ax.add_image(im)
ax.set_xlim(-64, 64)
ax.set_ylim(-4, 4)
ax.set_title(interp)

plt.show()

Tempo total de execução do script: ( 0 minutos 2.270 segundos)

Galeria gerada por Sphinx-Gallery